Source code for EventCharacteristics

# ===================================================
#
#    Copyright (c) 2023-2024
#      SPARKX Team
#
#    GNU General Public License (GPLv3 or later)
#
# ===================================================

import numpy as np
from sparkx.Particle import Particle
from sparkx.Lattice3D import Lattice3D
import warnings
from typing import Union, Optional, Any, List, Tuple


[docs] class EventCharacteristics: """ This class computes event-by-event characteristics, e.g., eccentricities or certain densities. Parameters ---------- event_data: list, numpy.ndarray or Lattice3D List or array containing particle objects for one event, or a lattice containing the relevant densities. Attributes ---------- event_data_: list, numpy.ndarray or Lattice3D List or array containing particle objects for one event, or a lattice containing the relevant densities. has_lattice_: bool Contains information if characteristics are derived from a lattice or particles Methods ------- set_event_data: Overwrites the event data. eccentricity: Computes the spatial eccentricity. eccentricity_from_particles: Computes the spatial eccentricity from particles. eccentricity_from_lattice: Computes the spatial eccentricity from a 3D lattice. generate_eBQS_densities_Milne_from_OSCAR_IC: Generates energy, baryon, charge, and strangeness densities in Milne coordinates. generate_eBQS_densities_Minkowski_from_OSCAR_IC: Generates energy, baryon, charge, and strangeness densities in Minkowski coordinates. Examples -------- .. highlight:: python .. code-block:: python :linenos: >>> from sparkx.Oscar import Oscar >>> from sparkx.EventCharacteristics import EventCharacteristics >>> >>> OSCAR_FILE_PATH = [Oscar_directory]/particle_lists.oscar >>> >>> # Oscar object containing all events >>> oscar = Oscar(OSCAR_FILE_PATH).particle_objects_list() >>> >>> # compute epsilon2 for the first event >>> event_characterization = EventCharacteristics(oscar[0]) >>> eps2 = event_characterization.eccentricity(2, weight_quantity = "number") """ event_data_: Union[ Lattice3D, List[Particle], np.ndarray[Any, np.dtype[np.object_]] ] has_lattice_: bool def __init__( self, event_data: Union[ List[Particle], np.ndarray[Any, np.dtype[np.object_]], Lattice3D ], ) -> None: self.set_event_data(event_data)
[docs] def set_event_data( self, event_data: Union[ List[Particle], np.ndarray[Any, np.dtype[np.object_]], Lattice3D ], ) -> None: """ Overwrites the event data. Parameters ---------- event_data : list, numpy.ndarray, or Lattice3D List or array containing particle objects for one event, or a lattice containing the relevant densities. Raises ------ TypeError If the input is not a list or numpy.ndarray when deriving characteristics from particles. If at least one element in the input is not of type :code:`Particle`. """ # check if the input is a Lattice3D object if isinstance(event_data, Lattice3D): self.event_data_ = event_data self.has_lattice_ = True else: # check that the input is a list/numpy.ndarray containing Particle # objects if not isinstance(event_data, (list, np.ndarray)): raise TypeError("The input is not a list nor a numpy.ndarray.") for particle in event_data: if not isinstance(particle, Particle): raise TypeError( "At least one element in the input is not a " + "Particle type." ) self.event_data_ = event_data self.has_lattice_ = False
def eccentricity_from_particles( self, harmonic_n: int, harmonic_m: Optional[int] = None, weight_quantity: str = "energy", ) -> complex: """ Computes the spatial eccentricity from particles. Parameters ---------- harmonic_n : int The harmonic order for the eccentricity calculation. harmonic_m : int, optional The power of the radial weight. weight_quantity : str, optional The quantity used for particle weighting. Valid options are "energy", "number", "charge", "baryon", "strangeness". Default is "energy". Returns ------- complex The complex-valued eccentricity. Raises ------ ValueError If the harmonic order is less than 1. If the weight quantity is unknown. """ real_eps = 0.0 imag_eps = 0.0 norm = 0.0 if harmonic_n < 1: raise ValueError( "Eccentricity is only defined for positive expansion orders." ) if harmonic_m is not None and harmonic_m < 1: raise ValueError("harmonic_m must be positive") if not isinstance(self.event_data_, (list, np.ndarray)): raise TypeError("The input is not a list nor a numpy.ndarray.") if harmonic_m is None and harmonic_n is None: raise ValueError("harmonic_m or harmonic_n must be provided") for particle in self.event_data_: if weight_quantity == "energy": weight = particle.E elif weight_quantity == "number": weight = 1.0 elif weight_quantity == "charge": weight = particle.charge elif weight_quantity == "baryon": weight = particle.baryon_number elif weight_quantity == "strangeness": weight = particle.strangeness else: raise ValueError("Unknown weight for eccentricity") x = particle.x y = particle.y # Exception for dipole asymmetry if harmonic_n == 1 and harmonic_m is None: rn = (x**2 + y**2) ** (3 / 2.0) elif harmonic_n != 1 and harmonic_m is None: rn = (x**2 + y**2) ** (harmonic_n / 2.0) elif harmonic_m is not None: rn = (x**2 + y**2) ** (harmonic_m / 2.0) else: raise ValueError("harmonic_m or harmonic_n must be provided") phi = np.arctan2(y, x) real_eps += rn * np.cos(harmonic_n * phi) * weight imag_eps += rn * np.sin(harmonic_n * phi) * weight norm += rn * weight return -(real_eps / norm + (imag_eps / norm) * 1j) def eccentricity_from_lattice( self, harmonic_n: int, harmonic_m: Optional[int] = None ) -> complex: """ Computes the spatial eccentricity from a 3D lattice. Takes all z-values into account. Parameters ---------- harmonic_n : int The harmonic order for the eccentricity calculation. harmonic_m : int, optional The power of the radial weight. Returns ------- complex The complex-valued eccentricity. Raises ------ ValueError If the harmonic order is less than 1. """ real_eps = 0.0 imag_eps = 0.0 norm = 0.0 if harmonic_n < 1: raise ValueError( "Eccentricity is only defined for positive expansion orders." ) if harmonic_m is not None and harmonic_m < 1: raise ValueError("harmonic_m must be positive") if isinstance(self.event_data_, (list, np.ndarray)): raise TypeError("The input is not a grid.") if harmonic_m is None and harmonic_n is None: raise ValueError("harmonic_m or harmonic_n must be provided") for i, j, k in np.ndindex(self.event_data_.grid_.shape): x, y, z = self.event_data_.get_coordinates(i, j, k) # Exception for dipole asymmetry if harmonic_n == 1 and harmonic_m is None: rn = (x**2 + y**2) ** (3 / 2.0) elif harmonic_n != 1 and harmonic_m is None: rn = (x**2 + y**2) ** (harmonic_n / 2.0) elif harmonic_m is not None: rn = (x**2 + y**2) ** (harmonic_m / 2.0) else: raise ValueError("harmonic_m or harmonic_n must be provided") phi = np.arctan2(y, x) lattice_density = self.event_data_.get_value_by_index(i, j, k) real_eps += rn * np.cos(harmonic_n * phi) * lattice_density imag_eps += rn * np.sin(harmonic_n * phi) * lattice_density norm += rn * lattice_density return -(real_eps / norm + (imag_eps / norm) * 1j)
[docs] def eccentricity( self, harmonic_n: int, harmonic_m: Optional[int] = None, weight_quantity: str = "energy", ) -> complex: """ Computes the spatial eccentricity. .. math:: \\varepsilon_{m,n}e^{\\mathrm{i}n\\Phi_{m,n}} = -\\frac{\\lbrace{r^{m}e^{\\mathrm{i}n\\phi}\\rbrace}}{\\lbrace{r^{m}\\rbrace}} For :code:`harmonic_n=1`, :code:`n=3` is used. If :code:`harmonic_m` is provided, then the given value is used as radial exponent. Parameters ---------- harmonic_n : int The harmonic order for the eccentricity calculation. harmonic_m : int, optional The power of the radial weight. weight_quantity : str, optional The quantity used for particle weighting. Valid options are "energy", "number", "charge", "baryon", "strangeness". Default is "energy". Returns ------- complex The complex-valued eccentricity. Raises ------ ValueError If the harmonic order is less than 1. """ if self.has_lattice_: return self.eccentricity_from_lattice( harmonic_n=harmonic_n, harmonic_m=harmonic_m ) else: return self.eccentricity_from_particles( harmonic_n=harmonic_n, harmonic_m=harmonic_m, weight_quantity=weight_quantity, )
[docs] def generate_eBQS_densities_Milne_from_OSCAR_IC( self, x_min: Union[float, int], x_max: Union[float, int], y_min: Union[float, int], y_max: Union[float, int], z_min: Union[float, int], z_max: Union[float, int], Nx: int, Ny: int, Nz: int, n_sigma_x: Union[float, int], n_sigma_y: Union[float, int], n_sigma_z: Union[float, int], sigma_smear: Union[float, int], eta_range: Union[List[Union[int, float]], Tuple[Union[float, int]]], output_filename: str, kernel: str = "gaussian", IC_info: Optional[str] = None, ) -> None: """ Generates energy, baryon, charge, and strangeness densities in Milne coordinates from OSCAR initial conditions. The total energy in GeV can be obtained by integrating the energy density with :math:`\\tau \\mathrm{d}x\\mathrm{d}y\\mathrm{d}\\eta`. Parameters ---------- x_min, x_max, y_min, y_max, z_min, z_max : float or int Minimum and maximum coordinates in the x, y, and z directions. Nx, Ny, Nz : int Number of grid points in the x, y, and z directions. n_sigma_x, n_sigma_y, n_sigma_z : float or int Width of the smearing in the x, y, and z directions in units of sigma_smear. sigma_smear : float or int Smearing parameter for particle data. eta_range : list, tuple A list containing the minimum and maximum values of spacetime rapidity (eta) and the number of grid points. output_filename : str The name of the output file where the densities will be saved. kernel : str The type of kernel to use for smearing the particle data. Supported values are 'gaussian' and 'covariant'. The default is "gaussian". IC_info : str A string containing info about the initial condition, e.g., collision energy or centrality. Raises ------ TypeError If the given :code:`IC_info` is not a string and if the class is initialized with a lattice. Returns ------- None """ if not all( isinstance(val, (float, int)) for val in [x_min, x_max, y_min, y_max, z_min, z_max, sigma_smear] ): raise TypeError("Coordinates and sigma_smear must be float or int") if not all((isinstance(val, int) and val > 0) for val in [Nx, Ny, Nz]): raise TypeError("Nx, Ny, Nz must be positive integers") if not all( (isinstance(val, (float, int)) and val > 0) for val in [n_sigma_x, n_sigma_y, n_sigma_z] ): raise TypeError( "n_sigma_x, n_sigma_y, n_sigma_z must be positive float or int" ) if not isinstance(eta_range, (list, tuple)): raise TypeError("eta_range must be a list or tuple") if len(eta_range) != 3: raise ValueError( "eta_range must contain min, max, and number of grid points" ) if not all(isinstance(val, (float, int)) for val in eta_range): raise TypeError("Values in eta_range must be float or int") if not isinstance(output_filename, str): raise TypeError("output_filename must be a string") if (IC_info is not None) and not isinstance(IC_info, str): raise TypeError("The given IC_info is not a string") if self.has_lattice_: raise TypeError( "The smearing function only works with EventCharacteristics derived from particles." ) if not isinstance(self.event_data_, list): raise TypeError("The input is not a list.") if not isinstance(kernel, str) or kernel not in { "gaussian", "covariant", }: raise TypeError( "Kernel must be a string and must be either 'covariant' or 'gaussian'." ) energy_density = Lattice3D( x_min, x_max, y_min, y_max, z_min, z_max, Nx, Ny, Nz, n_sigma_x, n_sigma_y, n_sigma_z, ) baryon_density = Lattice3D( x_min, x_max, y_min, y_max, z_min, z_max, Nx, Ny, Nz, n_sigma_x, n_sigma_y, n_sigma_z, ) charge_density = Lattice3D( x_min, x_max, y_min, y_max, z_min, z_max, Nx, Ny, Nz, n_sigma_x, n_sigma_y, n_sigma_z, ) strangeness_density = Lattice3D( x_min, x_max, y_min, y_max, z_min, z_max, Nx, Ny, Nz, n_sigma_x, n_sigma_y, n_sigma_z, ) # smear the particles on the 3D lattice energy_density.add_particle_data( self.event_data_, sigma_smear, "energy_density", kernel ) baryon_density.add_particle_data( self.event_data_, sigma_smear, "baryon_density", kernel ) charge_density.add_particle_data( self.event_data_, sigma_smear, "charge_density", kernel ) strangeness_density.add_particle_data( self.event_data_, sigma_smear, "strangeness_density", kernel ) # get the proper time of one of the particles from the iso-tau surface tau = self.event_data_[0].proper_time() if np.isnan(tau): raise ValueError( "The proper time is not defined for the given particles." ) # take the x and y coordinates from the lattice and use the set eta # range x = energy_density.x_values_ y = energy_density.y_values_ eta = np.linspace(eta_range[0], eta_range[1], int(eta_range[2])) if ( 1.05 * tau * ( np.sinh(eta[int(eta_range[2] / 2.0)]) - np.sinh(eta[int(eta_range[2] / 2.0 - 1)]) ) < (z_max - z_min) / Nz ): warnings.warn( "Warning: The grid for z is not fine enough for the requested eta-grid." ) # generate the header for the output file file_header = "# smeared density from SPARKX in Milne coordinates\n# " if IC_info is not None: file_header += IC_info file_header += "\n# grid info: n_x n_y n_eta x_min x_max y_min y_max eta_min eta_max\n# " file_header += "%d %d %d %g %g %g %g %g %g\n" % ( Nx, Ny, eta_range[2], x_min, x_max, y_min, y_max, eta_range[0], eta_range[1], ) file_header += "# tau [fm], x [fm], y [fm], eta, energy_density [GeV/fm^3], baryon_density [1/fm^3], charge density [1/fm^3], strangeness_density [1/fm^3]\n" # print the 3D lattice in Milne coordinates to a file # Open the output file for writing with open(output_filename, "w") as output_file: output_file.write(file_header) for x_val in x: for y_val in y: for eta_val in eta: z_val = tau * np.sinh(eta_val) # dz = tau * cosh(eta) * deta milne_conversion = tau * np.cosh(eta_val) value_energy_density = ( energy_density.interpolate_value( x_val, y_val, z_val ) * milne_conversion ) value_baryon_density = ( baryon_density.interpolate_value( x_val, y_val, z_val ) * milne_conversion ) value_charge_density = ( charge_density.interpolate_value( x_val, y_val, z_val ) * milne_conversion ) value_strangeness_density = ( strangeness_density.interpolate_value( x_val, y_val, z_val ) * milne_conversion ) if value_energy_density is None: value_energy_density = 0.0 value_baryon_density = 0.0 value_charge_density = 0.0 value_strangeness_density = 0.0 output_file.write( f"{tau:g} {x_val:g} {y_val:g} {eta_val:g} {value_energy_density:g} {value_baryon_density:g} {value_charge_density:g} {value_strangeness_density:g}\n" )
[docs] def generate_eBQS_densities_Minkowski_from_OSCAR_IC( self, x_min: Union[float, int], x_max: Union[float, int], y_min: Union[float, int], y_max: Union[float, int], z_min: Union[float, int], z_max: Union[float, int], Nx: int, Ny: int, Nz: int, n_sigma_x: Union[float, int], n_sigma_y: Union[float, int], n_sigma_z: Union[float, int], sigma_smear: Union[float, int], output_filename: str, kernel: str = "gaussian", IC_info: Optional[str] = None, ) -> None: """ Generates energy, baryon, charge, and strangeness densities in Minkowski coordinates from OSCAR initial conditions. The total energy in GeV can be obtained by integrating the energy density with :math:`\\mathrm{d}x\\mathrm{d}y\\mathrm{d}z`. Parameters ---------- x_min, x_max, y_min, y_max, z_min, z_max : float or int Minimum and maximum coordinates in the x, y, and z directions. Nx, Ny, Nz : int Number of grid points in the x, y, and z directions. n_sigma_x, n_sigma_y, n_sigma_z : float or int Width of the smearing in the x, y, and z directions in units of sigma_smear. sigma_smear : float or int Smearing parameter for particle data. output_filename : str The name of the output file where the densities will be saved. kernel : str The type of kernel to use for smearing the particle data. Supported values are 'gaussian' and 'covariant'. The default is "gaussian". IC_info : str A string containing info about the initial condition, e.g., collision energy or centrality. Raises ------ TypeError If the given :code:`IC_info` is not a string and if the class is initialized with a lattice. Returns ------- None """ if not all( isinstance(val, (float, int)) for val in [x_min, x_max, y_min, y_max, z_min, z_max, sigma_smear] ): raise TypeError("Coordinates and sigma_smear must be float or int") if not all((isinstance(val, int) and val > 0) for val in [Nx, Ny, Nz]): raise TypeError("Nx, Ny, Nz must be positive integers") if not all( (isinstance(val, (float, int)) and val > 0) for val in [n_sigma_x, n_sigma_y, n_sigma_z] ): raise TypeError( "n_sigma_x, n_sigma_y, n_sigma_z must be positive float or int" ) if (IC_info is not None) and not isinstance(IC_info, str): raise TypeError("The given IC_info is not a string") if not isinstance(output_filename, str): raise TypeError("output_filename must be a string") if self.has_lattice_: raise TypeError( "The smearing function only works with EventCharacteristics derived from particles." ) if not isinstance(self.event_data_, list): raise TypeError("The input is not a list.") if not isinstance(kernel, str) or kernel not in { "gaussian", "covariant", }: raise TypeError( "Kernel must be a string and must be either 'covariant' or 'gaussian'." ) energy_density = Lattice3D( x_min, x_max, y_min, y_max, z_min, z_max, Nx, Ny, Nz, n_sigma_x, n_sigma_y, n_sigma_z, ) baryon_density = Lattice3D( x_min, x_max, y_min, y_max, z_min, z_max, Nx, Ny, Nz, n_sigma_x, n_sigma_y, n_sigma_z, ) charge_density = Lattice3D( x_min, x_max, y_min, y_max, z_min, z_max, Nx, Ny, Nz, n_sigma_x, n_sigma_y, n_sigma_z, ) strangeness_density = Lattice3D( x_min, x_max, y_min, y_max, z_min, z_max, Nx, Ny, Nz, n_sigma_x, n_sigma_y, n_sigma_z, ) # smear the particles on the 3D lattice energy_density.add_particle_data( self.event_data_, sigma_smear, "energy_density", kernel ) baryon_density.add_particle_data( self.event_data_, sigma_smear, "baryon_density", kernel ) charge_density.add_particle_data( self.event_data_, sigma_smear, "charge_density", kernel ) strangeness_density.add_particle_data( self.event_data_, sigma_smear, "strangeness_density", kernel ) # get the proper time of one of the particles from the iso-tau surface tau = self.event_data_[0].proper_time() # take the x, y and z coordinates from the lattice x = energy_density.x_values_ y = energy_density.y_values_ z = energy_density.z_values_ # generate the header for the output file file_header = "# smeared density from SPARKX in Milne coordinates\n# " if IC_info is not None: file_header += IC_info file_header += "\n# grid info: n_x n_y n_eta x_min x_max y_min y_max eta_min eta_max\n# " file_header += "%d %d %d %g %g %g %g %g %g\n" % ( Nx, Ny, Nz, x_min, x_max, y_min, y_max, z_min, z_max, ) file_header += "# tau [fm], x [fm], y [fm], z [fm], energy_density [GeV/fm^3], baryon_density [1/fm^3], charge density [1/fm^3], strangeness_density [1/fm^3]\n" # print the 3D lattice in Minkowski coordinates to a file # Open the output file for writing with open(output_filename, "w") as output_file: output_file.write(file_header) for x_val in x: for y_val in y: for z_val in z: value_energy_density = energy_density.interpolate_value( x_val, y_val, z_val ) value_baryon_density = baryon_density.interpolate_value( x_val, y_val, z_val ) value_charge_density = charge_density.interpolate_value( x_val, y_val, z_val ) value_strangeness_density = ( strangeness_density.interpolate_value( x_val, y_val, z_val ) ) if value_energy_density is None: value_energy_density = 0.0 value_baryon_density = 0.0 value_charge_density = 0.0 value_strangeness_density = 0.0 output_file.write( f"{tau:g} {x_val:g} {y_val:g} {z_val:g} {value_energy_density:g} {value_baryon_density:g} {value_charge_density:g} {value_strangeness_density:g}\n" )