# ===================================================
#
# Copyright (c) 2023-2024
# SPARKX Team
#
# GNU General Public License (GPLv3 or later)
#
# ===================================================
import numpy as np
from sparkx.Particle import Particle
from sparkx.Lattice3D import Lattice3D
import warnings
from typing import Union, Optional, Any, List, Tuple
[docs]
class EventCharacteristics:
"""
This class computes event-by-event characteristics, e.g., eccentricities
or certain densities.
Parameters
----------
event_data: list, numpy.ndarray or Lattice3D
List or array containing particle objects for one event, or a lattice
containing the relevant densities.
Attributes
----------
event_data_: list, numpy.ndarray or Lattice3D
List or array containing particle objects for one event, or a lattice
containing the relevant densities.
has_lattice_: bool
Contains information if characteristics are derived from a lattice or
particles
Methods
-------
set_event_data:
Overwrites the event data.
eccentricity:
Computes the spatial eccentricity.
eccentricity_from_particles:
Computes the spatial eccentricity from particles.
eccentricity_from_lattice:
Computes the spatial eccentricity from a 3D lattice.
generate_eBQS_densities_Milne_from_OSCAR_IC:
Generates energy, baryon, charge, and strangeness densities in Milne
coordinates.
generate_eBQS_densities_Minkowski_from_OSCAR_IC:
Generates energy, baryon, charge, and strangeness densities in Minkowski
coordinates.
Examples
--------
.. highlight:: python
.. code-block:: python
:linenos:
>>> from sparkx.Oscar import Oscar
>>> from sparkx.EventCharacteristics import EventCharacteristics
>>>
>>> OSCAR_FILE_PATH = [Oscar_directory]/particle_lists.oscar
>>>
>>> # Oscar object containing all events
>>> oscar = Oscar(OSCAR_FILE_PATH).particle_objects_list()
>>>
>>> # compute epsilon2 for the first event
>>> event_characterization = EventCharacteristics(oscar[0])
>>> eps2 = event_characterization.eccentricity(2, weight_quantity = "number")
"""
event_data_: Union[
Lattice3D, List[Particle], np.ndarray[Any, np.dtype[np.object_]]
]
has_lattice_: bool
def __init__(
self,
event_data: Union[
List[Particle], np.ndarray[Any, np.dtype[np.object_]], Lattice3D
],
) -> None:
self.set_event_data(event_data)
[docs]
def set_event_data(
self,
event_data: Union[
List[Particle], np.ndarray[Any, np.dtype[np.object_]], Lattice3D
],
) -> None:
"""
Overwrites the event data.
Parameters
----------
event_data : list, numpy.ndarray, or Lattice3D
List or array containing particle objects for one event, or a
lattice containing the relevant densities.
Raises
------
TypeError
If the input is not a list or numpy.ndarray when deriving
characteristics from particles.
If at least one element in the input is not of type :code:`Particle`.
"""
# check if the input is a Lattice3D object
if isinstance(event_data, Lattice3D):
self.event_data_ = event_data
self.has_lattice_ = True
else:
# check that the input is a list/numpy.ndarray containing Particle
# objects
if not isinstance(event_data, (list, np.ndarray)):
raise TypeError("The input is not a list nor a numpy.ndarray.")
for particle in event_data:
if not isinstance(particle, Particle):
raise TypeError(
"At least one element in the input is not a "
+ "Particle type."
)
self.event_data_ = event_data
self.has_lattice_ = False
def eccentricity_from_particles(
self,
harmonic_n: int,
harmonic_m: Optional[int] = None,
weight_quantity: str = "energy",
) -> complex:
"""
Computes the spatial eccentricity from particles.
Parameters
----------
harmonic_n : int
The harmonic order for the eccentricity calculation.
harmonic_m : int, optional
The power of the radial weight.
weight_quantity : str, optional
The quantity used for particle weighting.
Valid options are "energy", "number", "charge", "baryon", "strangeness".
Default is "energy".
Returns
-------
complex
The complex-valued eccentricity.
Raises
------
ValueError
If the harmonic order is less than 1.
If the weight quantity is unknown.
"""
real_eps = 0.0
imag_eps = 0.0
norm = 0.0
if harmonic_n < 1:
raise ValueError(
"Eccentricity is only defined for positive expansion orders."
)
if harmonic_m is not None and harmonic_m < 1:
raise ValueError("harmonic_m must be positive")
if not isinstance(self.event_data_, (list, np.ndarray)):
raise TypeError("The input is not a list nor a numpy.ndarray.")
if harmonic_m is None and harmonic_n is None:
raise ValueError("harmonic_m or harmonic_n must be provided")
for particle in self.event_data_:
if weight_quantity == "energy":
weight = particle.E
elif weight_quantity == "number":
weight = 1.0
elif weight_quantity == "charge":
weight = particle.charge
elif weight_quantity == "baryon":
weight = particle.baryon_number
elif weight_quantity == "strangeness":
weight = particle.strangeness
else:
raise ValueError("Unknown weight for eccentricity")
x = particle.x
y = particle.y
# Exception for dipole asymmetry
if harmonic_n == 1 and harmonic_m is None:
rn = (x**2 + y**2) ** (3 / 2.0)
elif harmonic_n != 1 and harmonic_m is None:
rn = (x**2 + y**2) ** (harmonic_n / 2.0)
elif harmonic_m is not None:
rn = (x**2 + y**2) ** (harmonic_m / 2.0)
else:
raise ValueError("harmonic_m or harmonic_n must be provided")
phi = np.arctan2(y, x)
real_eps += rn * np.cos(harmonic_n * phi) * weight
imag_eps += rn * np.sin(harmonic_n * phi) * weight
norm += rn * weight
return -(real_eps / norm + (imag_eps / norm) * 1j)
def eccentricity_from_lattice(
self, harmonic_n: int, harmonic_m: Optional[int] = None
) -> complex:
"""
Computes the spatial eccentricity from a 3D lattice. Takes all z-values
into account.
Parameters
----------
harmonic_n : int
The harmonic order for the eccentricity calculation.
harmonic_m : int, optional
The power of the radial weight.
Returns
-------
complex
The complex-valued eccentricity.
Raises
------
ValueError
If the harmonic order is less than 1.
"""
real_eps = 0.0
imag_eps = 0.0
norm = 0.0
if harmonic_n < 1:
raise ValueError(
"Eccentricity is only defined for positive expansion orders."
)
if harmonic_m is not None and harmonic_m < 1:
raise ValueError("harmonic_m must be positive")
if isinstance(self.event_data_, (list, np.ndarray)):
raise TypeError("The input is not a grid.")
if harmonic_m is None and harmonic_n is None:
raise ValueError("harmonic_m or harmonic_n must be provided")
for i, j, k in np.ndindex(self.event_data_.grid_.shape):
x, y, z = self.event_data_.get_coordinates(i, j, k)
# Exception for dipole asymmetry
if harmonic_n == 1 and harmonic_m is None:
rn = (x**2 + y**2) ** (3 / 2.0)
elif harmonic_n != 1 and harmonic_m is None:
rn = (x**2 + y**2) ** (harmonic_n / 2.0)
elif harmonic_m is not None:
rn = (x**2 + y**2) ** (harmonic_m / 2.0)
else:
raise ValueError("harmonic_m or harmonic_n must be provided")
phi = np.arctan2(y, x)
lattice_density = self.event_data_.get_value_by_index(i, j, k)
real_eps += rn * np.cos(harmonic_n * phi) * lattice_density
imag_eps += rn * np.sin(harmonic_n * phi) * lattice_density
norm += rn * lattice_density
return -(real_eps / norm + (imag_eps / norm) * 1j)
[docs]
def eccentricity(
self,
harmonic_n: int,
harmonic_m: Optional[int] = None,
weight_quantity: str = "energy",
) -> complex:
"""
Computes the spatial eccentricity.
.. math::
\\varepsilon_{m,n}e^{\\mathrm{i}n\\Phi_{m,n}} = -\\frac{\\lbrace{r^{m}e^{\\mathrm{i}n\\phi}\\rbrace}}{\\lbrace{r^{m}\\rbrace}}
For :code:`harmonic_n=1`, :code:`n=3` is used. If :code:`harmonic_m` is provided,
then the given value is used as radial exponent.
Parameters
----------
harmonic_n : int
The harmonic order for the eccentricity calculation.
harmonic_m : int, optional
The power of the radial weight.
weight_quantity : str, optional
The quantity used for particle weighting.
Valid options are "energy", "number", "charge", "baryon", "strangeness".
Default is "energy".
Returns
-------
complex
The complex-valued eccentricity.
Raises
------
ValueError
If the harmonic order is less than 1.
"""
if self.has_lattice_:
return self.eccentricity_from_lattice(
harmonic_n=harmonic_n, harmonic_m=harmonic_m
)
else:
return self.eccentricity_from_particles(
harmonic_n=harmonic_n,
harmonic_m=harmonic_m,
weight_quantity=weight_quantity,
)
[docs]
def generate_eBQS_densities_Milne_from_OSCAR_IC(
self,
x_min: Union[float, int],
x_max: Union[float, int],
y_min: Union[float, int],
y_max: Union[float, int],
z_min: Union[float, int],
z_max: Union[float, int],
Nx: int,
Ny: int,
Nz: int,
n_sigma_x: Union[float, int],
n_sigma_y: Union[float, int],
n_sigma_z: Union[float, int],
sigma_smear: Union[float, int],
eta_range: Union[List[Union[int, float]], Tuple[Union[float, int]]],
output_filename: str,
kernel: str = "gaussian",
IC_info: Optional[str] = None,
) -> None:
"""
Generates energy, baryon, charge, and strangeness densities in Milne
coordinates from OSCAR initial conditions.
The total energy in GeV can be obtained by integrating the energy
density with :math:`\\tau \\mathrm{d}x\\mathrm{d}y\\mathrm{d}\\eta`.
Parameters
----------
x_min, x_max, y_min, y_max, z_min, z_max : float or int
Minimum and maximum coordinates in the x, y, and z directions.
Nx, Ny, Nz : int
Number of grid points in the x, y, and z directions.
n_sigma_x, n_sigma_y, n_sigma_z : float or int
Width of the smearing in the x, y, and z directions in units of
sigma_smear.
sigma_smear : float or int
Smearing parameter for particle data.
eta_range : list, tuple
A list containing the minimum and maximum values of spacetime
rapidity (eta) and the number of grid points.
output_filename : str
The name of the output file where the densities will be saved.
kernel : str
The type of kernel to use for smearing the particle data. Supported
values are 'gaussian' and 'covariant'. The default is "gaussian".
IC_info : str
A string containing info about the initial condition, e.g.,
collision energy or centrality.
Raises
------
TypeError
If the given :code:`IC_info` is not a string and if the class is initialized
with a lattice.
Returns
-------
None
"""
if not all(
isinstance(val, (float, int))
for val in [x_min, x_max, y_min, y_max, z_min, z_max, sigma_smear]
):
raise TypeError("Coordinates and sigma_smear must be float or int")
if not all((isinstance(val, int) and val > 0) for val in [Nx, Ny, Nz]):
raise TypeError("Nx, Ny, Nz must be positive integers")
if not all(
(isinstance(val, (float, int)) and val > 0)
for val in [n_sigma_x, n_sigma_y, n_sigma_z]
):
raise TypeError(
"n_sigma_x, n_sigma_y, n_sigma_z must be positive float or int"
)
if not isinstance(eta_range, (list, tuple)):
raise TypeError("eta_range must be a list or tuple")
if len(eta_range) != 3:
raise ValueError(
"eta_range must contain min, max, and number of grid points"
)
if not all(isinstance(val, (float, int)) for val in eta_range):
raise TypeError("Values in eta_range must be float or int")
if not isinstance(output_filename, str):
raise TypeError("output_filename must be a string")
if (IC_info is not None) and not isinstance(IC_info, str):
raise TypeError("The given IC_info is not a string")
if self.has_lattice_:
raise TypeError(
"The smearing function only works with EventCharacteristics derived from particles."
)
if not isinstance(self.event_data_, list):
raise TypeError("The input is not a list.")
if not isinstance(kernel, str) or kernel not in {
"gaussian",
"covariant",
}:
raise TypeError(
"Kernel must be a string and must be either 'covariant' or 'gaussian'."
)
energy_density = Lattice3D(
x_min,
x_max,
y_min,
y_max,
z_min,
z_max,
Nx,
Ny,
Nz,
n_sigma_x,
n_sigma_y,
n_sigma_z,
)
baryon_density = Lattice3D(
x_min,
x_max,
y_min,
y_max,
z_min,
z_max,
Nx,
Ny,
Nz,
n_sigma_x,
n_sigma_y,
n_sigma_z,
)
charge_density = Lattice3D(
x_min,
x_max,
y_min,
y_max,
z_min,
z_max,
Nx,
Ny,
Nz,
n_sigma_x,
n_sigma_y,
n_sigma_z,
)
strangeness_density = Lattice3D(
x_min,
x_max,
y_min,
y_max,
z_min,
z_max,
Nx,
Ny,
Nz,
n_sigma_x,
n_sigma_y,
n_sigma_z,
)
# smear the particles on the 3D lattice
energy_density.add_particle_data(
self.event_data_, sigma_smear, "energy_density", kernel
)
baryon_density.add_particle_data(
self.event_data_, sigma_smear, "baryon_density", kernel
)
charge_density.add_particle_data(
self.event_data_, sigma_smear, "charge_density", kernel
)
strangeness_density.add_particle_data(
self.event_data_, sigma_smear, "strangeness_density", kernel
)
# get the proper time of one of the particles from the iso-tau surface
tau = self.event_data_[0].proper_time()
if np.isnan(tau):
raise ValueError(
"The proper time is not defined for the given particles."
)
# take the x and y coordinates from the lattice and use the set eta
# range
x = energy_density.x_values_
y = energy_density.y_values_
eta = np.linspace(eta_range[0], eta_range[1], int(eta_range[2]))
if (
1.05
* tau
* (
np.sinh(eta[int(eta_range[2] / 2.0)])
- np.sinh(eta[int(eta_range[2] / 2.0 - 1)])
)
< (z_max - z_min) / Nz
):
warnings.warn(
"Warning: The grid for z is not fine enough for the requested eta-grid."
)
# generate the header for the output file
file_header = "# smeared density from SPARKX in Milne coordinates\n# "
if IC_info is not None:
file_header += IC_info
file_header += "\n# grid info: n_x n_y n_eta x_min x_max y_min y_max eta_min eta_max\n# "
file_header += "%d %d %d %g %g %g %g %g %g\n" % (
Nx,
Ny,
eta_range[2],
x_min,
x_max,
y_min,
y_max,
eta_range[0],
eta_range[1],
)
file_header += "# tau [fm], x [fm], y [fm], eta, energy_density [GeV/fm^3], baryon_density [1/fm^3], charge density [1/fm^3], strangeness_density [1/fm^3]\n"
# print the 3D lattice in Milne coordinates to a file
# Open the output file for writing
with open(output_filename, "w") as output_file:
output_file.write(file_header)
for x_val in x:
for y_val in y:
for eta_val in eta:
z_val = tau * np.sinh(eta_val)
# dz = tau * cosh(eta) * deta
milne_conversion = tau * np.cosh(eta_val)
value_energy_density = (
energy_density.interpolate_value(
x_val, y_val, z_val
)
* milne_conversion
)
value_baryon_density = (
baryon_density.interpolate_value(
x_val, y_val, z_val
)
* milne_conversion
)
value_charge_density = (
charge_density.interpolate_value(
x_val, y_val, z_val
)
* milne_conversion
)
value_strangeness_density = (
strangeness_density.interpolate_value(
x_val, y_val, z_val
)
* milne_conversion
)
if value_energy_density is None:
value_energy_density = 0.0
value_baryon_density = 0.0
value_charge_density = 0.0
value_strangeness_density = 0.0
output_file.write(
f"{tau:g} {x_val:g} {y_val:g} {eta_val:g} {value_energy_density:g} {value_baryon_density:g} {value_charge_density:g} {value_strangeness_density:g}\n"
)
[docs]
def generate_eBQS_densities_Minkowski_from_OSCAR_IC(
self,
x_min: Union[float, int],
x_max: Union[float, int],
y_min: Union[float, int],
y_max: Union[float, int],
z_min: Union[float, int],
z_max: Union[float, int],
Nx: int,
Ny: int,
Nz: int,
n_sigma_x: Union[float, int],
n_sigma_y: Union[float, int],
n_sigma_z: Union[float, int],
sigma_smear: Union[float, int],
output_filename: str,
kernel: str = "gaussian",
IC_info: Optional[str] = None,
) -> None:
"""
Generates energy, baryon, charge, and strangeness densities in
Minkowski coordinates from OSCAR initial conditions.
The total energy in GeV can be obtained by integrating the energy
density with :math:`\\mathrm{d}x\\mathrm{d}y\\mathrm{d}z`.
Parameters
----------
x_min, x_max, y_min, y_max, z_min, z_max : float or int
Minimum and maximum coordinates in the x, y, and z directions.
Nx, Ny, Nz : int
Number of grid points in the x, y, and z directions.
n_sigma_x, n_sigma_y, n_sigma_z : float or int
Width of the smearing in the x, y, and z directions in units of
sigma_smear.
sigma_smear : float or int
Smearing parameter for particle data.
output_filename : str
The name of the output file where the densities will be saved.
kernel : str
The type of kernel to use for smearing the particle data. Supported
values are 'gaussian' and 'covariant'. The default is "gaussian".
IC_info : str
A string containing info about the initial condition, e.g.,
collision energy or centrality.
Raises
------
TypeError
If the given :code:`IC_info` is not a string and if the class is initialized
with a lattice.
Returns
-------
None
"""
if not all(
isinstance(val, (float, int))
for val in [x_min, x_max, y_min, y_max, z_min, z_max, sigma_smear]
):
raise TypeError("Coordinates and sigma_smear must be float or int")
if not all((isinstance(val, int) and val > 0) for val in [Nx, Ny, Nz]):
raise TypeError("Nx, Ny, Nz must be positive integers")
if not all(
(isinstance(val, (float, int)) and val > 0)
for val in [n_sigma_x, n_sigma_y, n_sigma_z]
):
raise TypeError(
"n_sigma_x, n_sigma_y, n_sigma_z must be positive float or int"
)
if (IC_info is not None) and not isinstance(IC_info, str):
raise TypeError("The given IC_info is not a string")
if not isinstance(output_filename, str):
raise TypeError("output_filename must be a string")
if self.has_lattice_:
raise TypeError(
"The smearing function only works with EventCharacteristics derived from particles."
)
if not isinstance(self.event_data_, list):
raise TypeError("The input is not a list.")
if not isinstance(kernel, str) or kernel not in {
"gaussian",
"covariant",
}:
raise TypeError(
"Kernel must be a string and must be either 'covariant' or 'gaussian'."
)
energy_density = Lattice3D(
x_min,
x_max,
y_min,
y_max,
z_min,
z_max,
Nx,
Ny,
Nz,
n_sigma_x,
n_sigma_y,
n_sigma_z,
)
baryon_density = Lattice3D(
x_min,
x_max,
y_min,
y_max,
z_min,
z_max,
Nx,
Ny,
Nz,
n_sigma_x,
n_sigma_y,
n_sigma_z,
)
charge_density = Lattice3D(
x_min,
x_max,
y_min,
y_max,
z_min,
z_max,
Nx,
Ny,
Nz,
n_sigma_x,
n_sigma_y,
n_sigma_z,
)
strangeness_density = Lattice3D(
x_min,
x_max,
y_min,
y_max,
z_min,
z_max,
Nx,
Ny,
Nz,
n_sigma_x,
n_sigma_y,
n_sigma_z,
)
# smear the particles on the 3D lattice
energy_density.add_particle_data(
self.event_data_, sigma_smear, "energy_density", kernel
)
baryon_density.add_particle_data(
self.event_data_, sigma_smear, "baryon_density", kernel
)
charge_density.add_particle_data(
self.event_data_, sigma_smear, "charge_density", kernel
)
strangeness_density.add_particle_data(
self.event_data_, sigma_smear, "strangeness_density", kernel
)
# get the proper time of one of the particles from the iso-tau surface
tau = self.event_data_[0].proper_time()
# take the x, y and z coordinates from the lattice
x = energy_density.x_values_
y = energy_density.y_values_
z = energy_density.z_values_
# generate the header for the output file
file_header = "# smeared density from SPARKX in Milne coordinates\n# "
if IC_info is not None:
file_header += IC_info
file_header += "\n# grid info: n_x n_y n_eta x_min x_max y_min y_max eta_min eta_max\n# "
file_header += "%d %d %d %g %g %g %g %g %g\n" % (
Nx,
Ny,
Nz,
x_min,
x_max,
y_min,
y_max,
z_min,
z_max,
)
file_header += "# tau [fm], x [fm], y [fm], z [fm], energy_density [GeV/fm^3], baryon_density [1/fm^3], charge density [1/fm^3], strangeness_density [1/fm^3]\n"
# print the 3D lattice in Minkowski coordinates to a file
# Open the output file for writing
with open(output_filename, "w") as output_file:
output_file.write(file_header)
for x_val in x:
for y_val in y:
for z_val in z:
value_energy_density = energy_density.interpolate_value(
x_val, y_val, z_val
)
value_baryon_density = baryon_density.interpolate_value(
x_val, y_val, z_val
)
value_charge_density = charge_density.interpolate_value(
x_val, y_val, z_val
)
value_strangeness_density = (
strangeness_density.interpolate_value(
x_val, y_val, z_val
)
)
if value_energy_density is None:
value_energy_density = 0.0
value_baryon_density = 0.0
value_charge_density = 0.0
value_strangeness_density = 0.0
output_file.write(
f"{tau:g} {x_val:g} {y_val:g} {z_val:g} {value_energy_density:g} {value_baryon_density:g} {value_charge_density:g} {value_strangeness_density:g}\n"
)