# ===================================================
#
# Copyright (c) 2024
# SPARKX Team
#
# GNU General Public License (GPLv3 or later)
#
# ===================================================
import os
import random as rd
import numpy as np
from multiprocessing import Pool
from typing import Callable, Optional, Any
[docs]
class Jackknife:
"""
Delete-d Jackknife class for computation of confidence intervals for many different
statistics. The Jackknife method is similar to a bootstrap method, but
instead of replacing the data with random samples, it deletes a fraction
of the data and computes the statistic on the reduced data.
Literature on the method can be found in:
- `Avery McIntosh "The Jackknife Estimation Method" arXiv:1606.00497 <https://arxiv.org/abs/1606.00497>`__.
- J. Shao and D. Tu "The Jackknife and Bootstrap" Springer Series in Statistics, 0172-739, 1995.
The code supports parallel processing for the computation of the Jackknife
samples.
If the function applied to the data needs multi-dimensional data, the data
array is truncated along axis 0.
.. note::
It is the user's responsibility to ensure that the function applied to
the data is well-defined and that the data array is in the correct
input format for the specific function. This code always dilutes the
data along axis 0.
This class only checks that the function is callable and that the return
value is a single number (int or float).
Parameters
----------
delete_fraction : float
The fraction of the data to be randomly deleted.
number_samples : int
The number of Jackknife samples to be computed.
seed : int, optional
The random seed to be used for the Jackknife computation. The default
is 42.
Attributes
----------
delete_fraction : float
The fraction of the data to be randomly deleted.
number_samples : int
The number of Jackknife samples to be computed.
seed : int
The random seed to be used for the Jackknife computation.
Methods
-------
compute_jackknife_estimates:
Compute the Jackknife estimates
Raises
------
ValueError
If :code:`delete_fraction` is less than 0 or greater than or equal to 1.
If :code:`number_samples` is less than 1.
TypeError
If :code:`delete_fraction` is not a float.
If :code:`number_samples` is not an integer.
If :code:`seed` is not an integer.
Examples
--------
A demonstration how to the Jackknife class:
.. highlight:: python
.. code-block:: python
:linenos:
>>> from sparkx.Jackknife import Jackknife
>>>
>>> data_Gaussian = np.random.normal(0, 1, 100)
>>> jackknife = Jackknife(delete_fraction=0.4, number_samples=100)
>>> jackknife.compute_jackknife_estimates(data_Gaussian, function=np.mean)
"""
def __init__(
self, delete_fraction: float, number_samples: int, seed: int = 42
) -> None:
if not isinstance(delete_fraction, float):
raise TypeError("delete_fraction must be a float.")
if not isinstance(number_samples, int):
raise TypeError("number_samples must be an integer.")
if not isinstance(seed, int):
raise TypeError("seed must be an integer.")
if not isinstance(delete_fraction, float):
raise TypeError("delete_fraction must be a float.")
if not isinstance(number_samples, int):
raise TypeError("number_samples must be an integer.")
if not isinstance(seed, int):
raise TypeError("seed must be an integer.")
if delete_fraction < 0.0 or delete_fraction >= 1.0:
raise ValueError("delete_fraction must be between 0 and 1.")
if number_samples < 1:
raise ValueError("number_samples must be greater than 0.")
self.delete_fraction = delete_fraction
self.number_samples = number_samples
self.seed = seed
self._init_random()
def _init_random(self) -> None:
"""
Initialize random seed.
"""
rd.seed(self.seed)
def _randomly_delete_data(self, data: np.ndarray) -> np.ndarray:
"""
Randomly delete a fraction of the data along axis 0 and return the
remaining data.
Parameters
----------
data : np.ndarray
The data to be randomly deleted.
Returns
-------
np.ndarray
The remaining data after randomly deleting a fraction of it.
"""
data = data.copy()
delete_indices = rd.sample(
range(len(data)), int(self.delete_fraction * len(data))
)
data = np.delete(data, delete_indices, axis=0)
return data
def _apply_function_to_reduced_data(
self,
reduced_data: np.ndarray,
function: Callable[..., Any],
*args: tuple,
**kwargs: Any,
) -> Any:
"""
Apply a function to the reduced data.
Parameters
----------
reduced_data : np.ndarray
The reduced dataset.
function : function
The function to be applied to the reduced data. The function has to
accept a single argument, which is the reduced data array.
*args : tuple
Additional arguments to be passed to the function.
**kwargs : dict
Additional keyword arguments to be passed to the function.
Returns
-------
any
The result of applying the function to the reduced data.
"""
return function(reduced_data, *args, **kwargs)
def _compute_one_jackknife_sample(
self,
data: np.ndarray,
function: Callable[..., Any],
*args: tuple,
**kwargs: Any,
) -> Any:
"""
Compute one Jackknife sample.
Parameters
----------
data : np.ndarray
The data to be used to compute the Jackknife sample.
function : function
The function to be applied to the reduced data. The function has to
accept a single argument, which is the reduced data array.
*args : tuple
Additional arguments to be passed to the function.
**kwargs : dict
Additional keyword arguments to be passed to the function.
Returns
-------
any
The result of applying the function to the reduced data.
"""
reduced_data = self._randomly_delete_data(data)
return self._apply_function_to_reduced_data(
reduced_data, function, *args, **kwargs
)
@staticmethod
def _helper_unpack(
instance: "Jackknife",
index: int,
data: np.ndarray,
function: Callable[..., Any],
args: tuple,
kwargs: Any,
) -> Any:
"""
Helper function to unpack the arguments for parallel processing.
Parameters
----------
instance : Jackknife
The Jackknife instance.
index : int
The index of the Jackknife sample.
data : np.ndarray
The data to be used to compute the Jackknife sample.
function : function
The function to be applied to the reduced data. The function has to
accept a single argument, which is the reduced data array.
args : tuple
Additional arguments to be passed to the function.
kwargs : dict
Additional keyword arguments to be passed to the function.
Returns
-------
any
The result of applying _compute_one_jackknife_sample.
"""
rd.seed(instance.seed + index)
return instance._compute_one_jackknife_sample(
data, function, *args, **kwargs
)
def _init_random_subprocess(self, seed: int) -> None:
"""
Initialize random seed for subprocesses.
Parameters
----------
seed : int
The random seed to be used for subprocesses.
Returns
-------
None
"""
rd.seed(seed)
def _compute_jackknife_samples(
self,
data: np.ndarray,
function: Callable[..., Any],
num_cores: Optional[int] = None,
*args: tuple,
**kwargs: Any,
) -> np.ndarray:
"""
Compute all Jackknife samples.
Parameters
----------
data : np.ndarray
The data to be used to compute the Jackknife samples.
function : function
The function to be applied to the reduced data. The function has to
accept a single argument, which is the reduced data array.
num_cores : int, optional
The number of cores to be used for parallel processing. The default
is None, which means that all available cores will be used.
*args : tuple
Additional arguments to be passed to the function.
**kwargs : dict
Additional keyword arguments to be passed to the function.
Returns
-------
np.ndarray
The results of applying the function to the reduced data.
Raises
------
ValueError
If num_cores is less than 1.
"""
if isinstance(num_cores, int) and num_cores < 1:
raise ValueError("num_cores must be greater than 0.")
if num_cores is None:
num_cores = os.cpu_count()
with Pool(
num_cores,
initializer=self._init_random_subprocess,
initargs=(self.seed,),
) as pool:
results = pool.starmap(
self._helper_unpack,
[
(self, index, data, function, args, kwargs)
for index in range(self.number_samples)
],
)
return np.array(results)
[docs]
def compute_jackknife_estimates(
self,
data: np.ndarray,
function: Callable[..., Any] = np.mean,
num_cores: Optional[int] = None,
*args: tuple,
**kwargs: Any,
) -> float:
"""
Compute the Jackknife uncertainty estimates for a function applied to
a data array. The default function is :code:`np.mean`, but it can be
changed to any other function that accepts a numpy array as input.
Multiple other arguments can be passed to the function as args and
kwargs.
Parameters
----------
data : np.ndarray
The data to be used to compute the Jackknife samples. The data is
truncated along axis 0.
function : function, optional
The function to be applied to the reduced data. The function can
accept additional arguments and keyword arguments. The default is
np.mean. It has to return a single number (int or float).
num_cores : int, optional
The number of cores to be used for parallel processing. The default
is None, which means that all available cores will be used.
*args : tuple
Additional arguments to be passed to the function.
**kwargs : dict
Additional keyword arguments to be passed to the function.
Returns
-------
float
The Jackknife estimate for the standard deviation of the function
applied to the data.
Raises
------
ValueError
If :code:`delete_n_points` is less than 1 (:code:`delete_fraction` too small).
TypeError
If data is not a numpy array or if function is not callable.
TypeError
If the function does not return a single number (float or int).
"""
delete_n_points = int(self.delete_fraction * len(data))
if delete_n_points < 1:
raise ValueError("The delete_fraction is too small.")
if not isinstance(data, np.ndarray):
raise TypeError("data must be a numpy array.")
if not callable(function):
raise TypeError("function must be a callable object.")
# Check if the function returns a single number
test_result = function(
data[: max(1, len(data) // 100)], *args, **kwargs
)
if not isinstance(test_result, (int, float)):
raise TypeError("function must return a single number.")
jackknife_samples = self._compute_jackknife_samples(
data, function, num_cores, *args, **kwargs
)
# mean of jackknife samples
mean_samples = np.mean(jackknife_samples)
# variance of the jackknife samples
variance_samples = 0.0
for i in range(len(jackknife_samples)):
variance_samples = (jackknife_samples[i] - mean_samples) ** 2.0
if delete_n_points == 1:
variance_samples *= (len(jackknife_samples) - 1) / len(
jackknife_samples
)
else:
variance_samples *= (len(data) - delete_n_points) / (
delete_n_points * len(jackknife_samples)
)
return np.sqrt(variance_samples)